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Antarctica: ice mass change 2003 – 2006
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Figure 3. A comparison of the GRACE and ICESat data sets over the 2003-2006 time span. The left panel shows the mass
changes derived from RL04 GRACE data in terms of equivalent water height, while the right panel shows the averaged
crossover height differences derived from RL428 ICESat data. Both maps show high spatial correlations.

7. Conclusions

The spatial similarities observed between the GRACE
and ICESat results are encouraging, and demonstrate that
the two missions are observing the same general features
over Antarctica. The challenge at the moment is to im-
prove the methods and models that are used to compute
the mass change estimates, in particular those surrounding
the firn density and GIA. Advances in the climate and ice
sheet modeling of Antarctica should lead to a reduction in
the uncertainty of the firn models. This would in turn allow
the gravity and altimetry data sets to be used to separate
the mass change signal from that of the GIA signal. For
example, if it is assumed that the secular changes observed
by GRACE and ICESat are more accurate than the current
GIA models for Antarctica, then it might be possible to con-
strain the location and magnitude of these secular changes
to improve future GIA models. There have already been
some suggestions on how this might be accomplished in the
literature [Wahr et al., 2000; Wu et al., 2002], and future
work will explore these and other methodologies.
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Limiting factors for GRACE gravity field determination

I sensor accuracy
I disturbances
I spatial-temporal sampling
I parameterization, modeling, representation



Disturbances in accelerometer observations
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Heater switching spikes
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Modeling and reduction
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’Twangs’
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Magnetic torquer spikes

torquer rod
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Signal contributions: PSD analysis
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Rotational movement



Penumbra transitions
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Penumbra transitions

penumbra accelerations
(Vokrouhlicky et al. 1993)

compression of solar disk, seen from a
space shuttle



Thruster accelerations



More approaches for sensor time series validation

I accelerometers: difference GRACE A - B
I mutual validation GPS - K-band ranging
I rotational movements



Gravity field missions as precision test laboratories (1)

I novel sensor accuracies
I excellent sensor performance and robustness
I disturbances
I identification, modeling, separation
I monitor, understand and control laboratory conditions

material properties
environment
satellite dynamics
control system



Gravity field missions as precision test laboratories (2)

I calibration / validation
noise levels
test signals
sensor combinations
sensor-satellite interaction

I spatial-temporal sampling, aliasing due to short period
mass changes



The path to follow-on gravity missions
I sensor accuracy
I disturbances
I spatial-temporal sampling
I parameterization, modeling, representation

degree variance spectrum



The path to follow-on gravity missions

I continuation of GRACE time series ASAP
I new sensor technologies (inter-satellite laser

interferometry)
I improvement of “laboratory conditions”
I sensor combinations for redundancy, validation
I satellite constellations for improved sampling



Thank you!



distribution of twangs



accelerometer scale factors
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