

Workshop output

Document	Due date	
Roadmap	draft version final version	02-10-2009 15-10-2009
Resolutions	consolidated	02-10-2009
Declarations	consolidated	02-10-2009
Workshop rep	15-11-2009	
Summary rep	TBD	
Thematic issu	TBD	

Resolutions

Resolutions from the Workshop on The Future of Satellite Gravitmetry, 12–13 April 2007, ESTEC; Noordwijk

The Future of Satellite Gravimetry

Report from the

Workshop on The Future of Satellite Gravimetry 12-13 April 2007, ESTEC, Noordwijk, The Netherlands

Radboud Koop and Reiner Rummel (Eds.)

1

GRACE is demonstrating very successfully to provide monthly time series of changes in the Earth's gravity field. This adds a new – and very central – parameter set to the study of Global Change phenomena such as deglaciation in the large ice shields of Antarctica and Greenland or the variations of the global water cycle.

Proposal:

Statement on the value of GRACE and its impact in geosciences, including a non-exhaustive list of examples in diverse fields of application, but also current limitations.

 \rightarrow B1, B5, B6

 $oldsymbol{2}$

GOCE – to be launched 2008 – is expected to deliver the global static gravity field and geoid with unprecedented precision and spatial resolution. It will in particular serve as reference for global ocean circulation studies by altimetry.

Proposal:

Updated statement on the GOCE status, expected gain with respect to GRACE, and expected impact.

 \rightarrow B1, B2, B5, B6

3a

In view of science achievements and the current performance of GRACE the participants of the workshop strongly support the idea of a GRACE follow-on mission based on the present configuration, with emphasis on the uninterrupted continuation of time series of global gravity changes. This should be short-term (Launch ~2011 TBD) priority one.

Seed questions:

How can we support the initiative on the GRACE follow-on mission?

 \rightarrow B1 – B6

In parallel, investigations into the reduction of the aliasing problem offers even greater science benefits by increased spatial resolution and accuracy and should therefore have high priority.

Seed questions:

- What is the status of investigations related to the problems of aliasing and distortions, what are the conclusions?
- Have we significantly increased the insight into these problems since 2007?
- What are possible (and realistic) scenarios to solve/reduce these problems, and what is their expected qualification time?

 \rightarrow B2, B3, B4

Medium term priority should be focused on higher precision and higher resolution in space and time. This step requires (1) the reduction of the current level of aliasing (of high frequency phenomena, in particular tides, into the time series), (2) the elimination of systematic distortions (caused by the peculiar non-isotropic sensitivity of a single pair low-low SST), and (3) the improvement of the separability of the observed geophysical signals.

Elements of a strategy in this direction are configuration flights, multi-satellite systems, improved data processing methodologies and improved and comprehensive Earth System modeling.

This will open the door to a more efficient use of improved sensor systems, such as optical ranging systems, quantum gravity sensors, and active angular and drag-free control.

Seed questions:

- What is the scientific progress since 2007?
- How large are the relative contributions of ...

Medium term priority should be focused on higher precision and higher resolution in space and time. This step requires (1) the reduction of the ...

Seed questions:

- What is the scientific progress since 2007?
- How large are the relative contributions of
 - sensor system (noise level, anisotropic error behaviour, ...)
 - inaccurate knowledge of background models
 - spectral and temporal aliasing
 - processing errors
 - supporting technologies (tracking systems, accelerometers, drag-free systems)
- Do we need a consistent Earth system model to fully exploit space gravity observations (role of hydrology, oceans, atmosphere; separability)?
- How can we involve experts of supporting sciences more prominently in our discussion?

 \rightarrow B1 – B6

[5]

The long term strategy should include the gravimetric use of advanced clocks (ground based and flying clocks), micro-satellite systems, and space-qualified quantum gravity sensors.

Seed questions:

- What is the status and scientific progress of those new technologies?
- Which of these technologies are not / less affected by the problems we are currently dealing with?

 \rightarrow B2, B4

6

The participants of the workshop support the activities and developments towards a future satellite gravity mission.

Proposal:

• I hope we will find a majority for this statement!

 \rightarrow all

The workshop results will be offered to national and international space agencies and other relevant institutions.

Proposal:

• We should also think about a dissemination strategy during this workshop.

 \rightarrow B6

The initiative will be taken to set up an international steering/working group or platform to coordinate the future activities and actions in this field.

Seed questions:

- Shall we take concrete steps to install such an international steering/working group?
- If yes, how can we organize it most efficiently?
- Which should be the institutional platform of such a working group, also for the purpose of legitimation?

Who is prepared and willing to join?

9

Links between the geodetic and Earth science community with the communities from fundamental physics will be strengthened and/or established.

Evaluation:

• This statement is answered positively by the list of participants of this workshop!

Seed questions:

- Which additional statements are required for the new resolutions?
- TBD

 \rightarrow all

Roadmap

Inventory from the Workshop on The Future of Satellite Gravitmetry, 12–13 April 2007, ESTEC; Noordwijk

The Future of Satellite Gravimetry

Report from the

Workshop on The Future of Satellite Gravimetry 12-13 April 2007, ESTEC, Noordwijk, The Netherlands

Radboud Koop and Reiner Rummel (Eds.)

Ice sheets

Geodesy

Sea level

change

200

1000

50-100

100-1000

100-1000

100-20000

100-1000

100-1000

Accuracy requirements

static

temporal

Application		_	Accuracy		Spatial resolution
			Geoid	Gravity	Half wavelength
			[cm]	[mGal]	D [km]
Solid Earth Lithosphere/upper mantle		le density		1-2	100
Continental lithosphere Seismic hazards	Continental lithosphere	Sedimentary		1-2	50-100
	Basins rifts		1-2	20-100	
		Tectonic motions		1-2	100-500
	Seismic hazards			1	100
Ocean lithosphere/a		nosphere		0.5	100-200
Oceanography	Short scale		1-2		100

0.2

~0.1

2

1-5

~1-5

~1-3

to studies of sea level change.

Many of the above applications, with their specific requirements, are relevant

Table 3-1: Static gravity field, scientific requirements in preparation for GOCE, from: Rummel (2005).

Static gravity field, scientific requirements in reparation for GOCE

Table 3-2: Accuracy requirements.

INS

Orbits

Basin scale Rock basement

Ice vertical movements

Unified height system

Levelling by GPS

Application	mm _{H2O} /mon	mm _{H2O} /yr	smoothing radius (km) ≥ 300	Timescales and Notes
Hydrologic basin total water change	10	20 (10)	400	days to decades
Glacier mass loss		2 (1)	300	seasonal, interannual
Ice sheet mass loss		20 (5)	1,000	
Oceanic gyres spinup or down		4 (1)	700	interannual
Global Sea level rise: thermosteric / eustatic		1 (0.3)	5,000	seasonal, interannual
Glacial Isostatic Adjustment		0.5 (0.1)	1,000	5-10 years

Candidate technology

gravity sensors

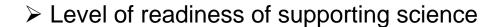
Table 6-1: Gravity Sensors and Their Status of Development.

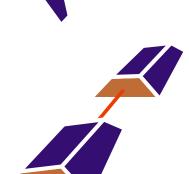
	Status	Expected qualification time*
Microwave interferometer	Flight proven (TRL9)	-
Inter-spacecraft		
Laser interferometer:		
Master-slave (2 lasers)	Qualified prototype (TRL6)	1-2 years
Master+retro-reflector(1 laser)	Breadboard (TRL4)	2-4 years
Gradiometer:		
Electro-static	Flight qualified (TRL8)	-
LTP Optical test mass readout	Launch in 2010 (TRL7)	1 year
Quantum	Breadboard (TRL3)	15 years
Cryogenic	Breadboard (TRL3)	undefined (unfit for mission)
Drag-free low-low SST:		
LTP Gravity Reference Sensor	Launch in 2009 (TRL7)	1 year
One-axis Ion Thrusters	Flight Proven (TRL 9)	-
5-DoF FEEP Thrusters	Launch in 2009 (TRL 5)	3 years
Optical clock	Qualified prototype (TRL6)	15 years

supporting technology

Table 6-2: Supporting Technology for Future Gravimetric Satellite Missions

Table 6-2. Supporting Technology for Future Gravimetric Satellite Missions.			
	Status	Expected qualification time	
Tracking system:			
GPS	Flight proven (TRL9)	-	
GLONASS	Flight proven (TRL9)	1-2 years *	
GALILEO	Prototype (TRL5)		
Electric propulsion:			
Ion engine (high thrust)	Flight qualified (TRL8)	-	
FEEP (low thrust)	Qualified prototype (TRL6)	2-4 years	
Accelerometer 10 ⁻¹⁰ ms-2	Flight proven (TRL9)**	-	
Accelerometer 10 ⁻¹² ms-2	Flight qualified (TRL8)**	-	
LISA/LTP inertial sensor 10 ⁻¹⁴	Launch in 2010 (TRL7)	1 year	
ms ⁻²			




Roadmap: Key elements of matrix of mission concepts

Gravity sensor / formation

- ➤ Mission (user) requirements
 - > Expected performance
 - > Pros & cons of mission concept
 - Level of technological maturity (TRL)
 - Expected qualification time

- > Remaining scientific challenges and expected solution time
 - Complementarity with and need of other data sources
 - Cost estimates
 - ➤ Prioritization (→ baseline strategy)

Wednesday

Charge to the Breakout Sessions

09:00 - 10:40	P1: Status, Requirements and Challenges		
10:40 - 11:00	Coffee Break		
11:00 – 11:20	Introduction to Breakout Sessions		
11:20 – 12:40	B1 A <u>3</u> 06	B2 B <u>E</u> 01	B3 A <u>1</u> 11
	Mission requirements	Mission design	Data proc., modelling & interpret.
12:40 – 14:00	Lunch (buffet)		
14:00 – 15:40	B1 A <u>3</u> 06 ctd'	B2 B <u>E</u> 01 ctd'	B3 A <u>1</u> 11 ctd'
15:40 – 16:00	Coffee Break		
16:00 – 16:30	P2a: Reports from the Breakout Sessions		
16:30 – 18:00	P2b: The Space Agencies: Programs and Boundary Conditions		
19:00 – 21:00	No-Host Dinner		
Delend Deil Hene	Data a Dia a		5 1 6 1 1

Charge to the Breakout Sessions

B 1·	Mission	requirements
—		1 Oquil Olliolito

3rd floor

Co-chairs: Bert Vermeersen, Victor Zlotnicki

A306

B2: Mission design

this room

Co-chairs: Jürgen Müller, Stefano Cesare, Nico Sneeuw

BE01

B3: Data processing, modelling and interpretation

1st floor

Co-chairs: Frank Flechtner, Srinivas Bettadpur

A111

- Contributions to roadmap
- Contributions to resolutions
- Contributions to declarations
- Contributions to workshop report

Equipment

B1: Mission requirements

olci

Co-chairs: Bert Vermeersen, Victor Zlotnicki

A306

3rd floor

B2: Mission design

this room

Co-chairs: Jürgen Müller, Stefano Cesare, Nico Sneeuw

BE01

B3: Data processing, modelling and interpretation

1st floor

Co-chairs: Frank Flechtner, Srinivas Bettadpur

A111

All rooms are equipped with:

- fixed projector connected with presentation notebook
- mobile projector (optionally: e.g. for minutes)
- blackboard

