

Hydrology Mission Requirements for a GRACE Follow-On

Matt Rodell

Hydrological Sciences Branch
NASA Goddard Space Flight Center

Remote Sensing of the Water Cycle Radiation **Soil Moisture** Vegetation Snow, Ice, Rainfall Snow Visible Light Aqua: Ultra Infrared Violet Gamma Radio waves Microwaves X-rays MODIS, AMSR-E, etc. 300µm Wavelengths CLOUDS & **Traditional** WATER VAPOR RECIPITATION

INAPOTRANSFIRATION

WATER STORAGE

NEILTRATION

WATER TABLE

BEDROCK

FRESHWATER

STORAGE

GROUND WATER FLOW

Traditional
CACLEON-based
remote sensing
technologies
cannot sense
Waternetowithe
Hrighten its
abilitynterenspitor
Matshall
lexelsydsynn to
the pest
aquifer

EVAPORATION

Mission Requirements for Hydrology

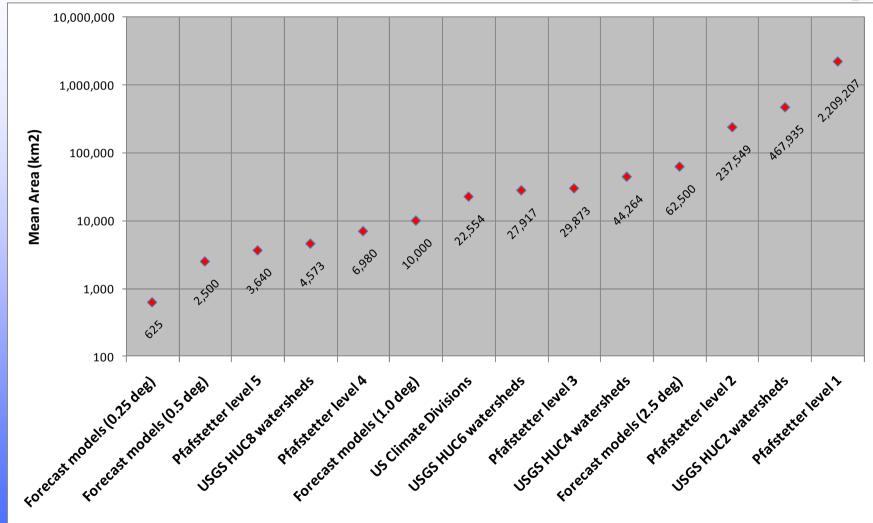
- 1) Accuracy
- Typically within 5-20%; GRACE is sufficient, depending on resolution
- 2) Product latency
- Need real-time; GRACE delivers hydrology products 6-12 weeks after
- 3) Spatial resolution
- Most practical applications require observations at scales of 0.01 2500 km; resolution of GRACE is two orders of magnitude coarser
- 4) Isolating individual water storage components
- GRACE provides no clue
- 5) Temporal resolution
- Most hydrological processes operate on hourly to weekly timescales; GRACE is monthly, 10-day at best

Mission Requirements for Hydrology

- 1) Accuracy
- Typically within 5-20%; GRACE is sufficient, depending on resolution
- 2) Product latency
- Need real-time; GRACE delivers hydrology products 6-12 weeks after
- 3) Spatial resolution
- Most practical applications require observations at scales of $0.01-2500~\rm km$; resolution of GRACE is two orders of magnitude coarser
- 4) Isolating individual water storage components
- GRACE provides no clue
- 5) Temporal resolution
- Most hydrological processes operate on hourly to weekly timescales; GRACE is monthly, 10-day at best

And yet GRACE has been hugely valuable for hydrology

Mission Requirement Drivers


Because satellite gravimetry measurements are unique and valuable, other factors will more likely drive mission requirements for a follow-on:

- 1)Cost (and cost sharing among space agencies)
- 2)Technology readiness
- 3)Limitations on resolution/accuracy due to aliasing
- 4)Cutting edge certain space agencies prefer to fund exciting new missions, with new technologies (e.g., laser ranging), rather than continue purely for the sake of monitoring

Scales of Hydrology

Water Managers' Reactions to GRACE Products

On the issue of temporal averaging:

• "In areas with monotonically increasing snowpacks (e.g., mountains of the western U.S.), the forecasting framework is set up to a large extent around water supply outlooks, issued monthly. If a 5-10 day integration period yielded a good estimate of the conditions prior to the outlook issuance, they'd probably love it."

On the issue of spatial resolution:

- "Two hundred *thousand* square kilometers?"
- "The NWS, for example, forecasts for a set of contiguous basins across the country. The mean basin size is 981 km², 90% of the basins are less than 2000 km², and 95% are less than 3500 km² ... even the comparatively huge basins of the USGS HUC-6 delineation have a mean area of 17,592 km², 90% are less than 40,000 km², and 95% are less than 50,000 km²."
- "The only hope here would be a 'check', allowing forecasters to integrate their basin estimates over a large region to compare to GRACE."

Water Managers' Reactions to GRACE Products

On the issue of latency:

- "Operationally speaking, the latency would generally be considered a killer. Normally, most snow observations make it into the system within 24 hours, and the really bad ones take 2-3 days."
- "Different forecasting entities (NWS River Forecast Centers, NRCS, etc.) have different requirements, but for the most part everyone needs data more quickly than 10-14 days. Even snow surveys (snow courses, airborne surveys, etc.) are generally completed and reported in a few days to a week, putting sort of an upper bound on acceptable snow data latency."
- "Given the latency, GRACE based snow estimates may be valuable for refining the climatologies that underpin the runoff prediction systems, but not for the operational predictions themselves."
- "Perhaps if you could take advantage of water storage memory to extrapolate the data forward" [using a data assimilating model].